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United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
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Introductory Comments 
This report covers modeling aspects of a combined experimental and modeling task in support of 
the DOE Science and Technology Program (formerly OSTI) within the Office of Civilian 
Radioactive Waste Management (OCRWM).   
 
Research Objectives 
The research for this project dealt with diffusive retardation: solute moving through a fracture 
diffuses into and out of the rock matrix.  This diffusive exchange retards overall solute 
movement, and retardation both dilutes waste being released, and allows additional decay. 
 
Diffusive retardation involves not only fracture conductivity and matrix diffusion, but also other 
issues and processes: contaminants may sorb to the rock matrix, fracture flow may be episodic, a 
given fracture may or may not flow depending on the volume of flow and the fracture’s 
connection to the overall fracture network, the matrix imbibes water during flow episodes and 
dries between episodes, and so on.   
 
The objective of the project was to improve understanding of diffusive retardation of 
radionuclides due to fracture / matrix interactions.  Results from combined experimental / 
modeling work were to (1) determine whether the current understanding and model 
representation of matrix diffusion is valid, (2) provide insights into the upscaling of laboratory-
scale diffusion experiments, and (3) help in evaluating the impact on diffusive retardation of 
episodic fracture flow and pore connectivity in Yucca Mountain tuffs. 
 
Questions explored included the following: 
• What is the relationship between the diffusion coefficient measured at one scale, to that 

measured or observed at a different scale?  In classical materials this relationship is trivial; in 
low-connectivity materials it is not.   

• Is the measured diffusivity insensitive to the shape of the sample?  Again, in classical 
materials there should be no sample shape effect. 

• Does sorption affect diffusive exchange in low-connectivity media differently than in 
classical media? 

• What is the effect of matrix saturation on the effective diffusivity?  Is it different for low-
connectivity media than for classical media? 

• In addition to changing the matrix saturation (and thereby the diffusion coefficient), the 
wetting/drying cycles drive water into, and then out of, the matrix.  How do these mass flow 
cycles affect the long-term exchange of solutes between the fracture and the matrix?  Can it 
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be treated as a simple increase in effective diffusivity?  Is it a local or a global effect?  Is the 
effect different in low-connectivity media? 

 
The modeling portion of this project primarily focused on how diffusion varies with pore 
connectivity, and it also connected the experimental work to theory. 
 
Approach 
 
Experimental Work 
Various properties of YMP rock were measured; some other rocks were also examined for 
comparison.  Several procedures were used and compared: 
 
(1) Dry rock cores, surface-epoxied except at the top and bottom, were suspended from an 

electronic balance over a water reservoir.  The mass of water imbibed up into the core was 
recorded as a function of time, starting when the core first touched the water surface.  Effects 
of buoyancy, evaporation, and drift were eliminated.  This, the most basic (and in some ways 
the most revealing) of all the experiments (see accomplishments, below), was performed for 
different size and shape samples of several rocks. 

 
(2) The measurements in (1) were also performed using a tracer rather than pure water.  The 

tracer concentration as a function of distance from the imbibing face was then measured 
using LA/ICP-MS.  This was done with both sorbing and non-sorbing tracers. 

 
(3) Tracer movement was evaluated over the course of four wetting and drying cycles, with a 

different suite of both sorbing and non-sorbing tracers added at the beginning of each wetting 
cycle.  The final disposition of the tracers was evaluated at the end of all four cycles, using 
LA/ICP-MS.  One experiment with 4 episodes was completed. 

 
Two other experimental portions of the overall project were the following: 
 
(4) Synchrotron microtomography of a KI tracer, allowing analysis of the diffusion front.  A 

custom sample stand was built, and some data collected, but the spatial resolution of the 
diffusion front was not high enough to meet the objectives. 

 
(5) Independent gas-phase measurement of the diffusion coefficient of the rock samples.  The 

method to be used involved diffusive counter-flow of two gases, but a persistent gas pressure 
gradient across the sample apparently prevented the measurements from giving a pure 
diffusion coefficient. 

 
Modeling Work 
Because a significant role of the modeling was to connect the experimental results to theory, the 
relevant theory should be identified.  The statistics of low-connectivity media is the province of 
percolation theory (Stauffer and Aharony, 1994; Hunt, 2005).  It is not the purpose of this report 
to present a primer on this theory, but some basic concepts are introduced in Appendix 1.   
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Many of the experiments were modeled using a pore-scale network model.  The development of 
the model used is documented in the project proposal, statement of work, and scientific notebook 
(SN); source code is also provided on a supplementary CD.  Briefly, the original model (Ewing 
and Berkowitz, 2001) was an internal diffusion-limited aggregation (also called anti-DLA and 
diffusion-limited annihilation; Meakin and Deutsch, 1986) growth model: a simple cubic lattice 
porespace was generated and stochastically pruned to the desired connectivity, and all pores were 
considered “empty” except those at the inlet face.  Random walkers were successively released 
from the inlet face; when a walker first encountered an empty pore it stopped, filling it.  The 
procedure is a simple but extremely CPU-intensive analog of imbibition: it might easily require 
over a million random walkers before the wetting front reached the far face, and successive 
walkers require increasingly long times (often billions of time steps) to find an empty pore. 
 
A second-generation model was therefore developed to speed the simulations.  This model 
released a fixed number of random walkers (usually 1000) at the inlet face, and recorded each 
particle’s first arrival time at every (discrete) distance from the inlet face.  Results were 
statistically identical with the original model (see file testimbibe2.xls), so this second generation 
model was used for most of the simulations.  Unfortunately, neither model directly addressed 
issues of matrix saturation, as discussed below. 
 
Experiments and simulations both produced results that, when plotted in logarithmic space (log 
cumulative mass imbibed as a function of log time), produced one of three results: (1) a straight 
line with a slope of 0.5 (because imbibition and diffusion are classically proportional to the 
square root of time; see Philip, 1957, and Bruce & Klute, 1956), (2) a slope of approximately 
0.265, or (3) a slope of about 0.265, transitioning to a slope of 0.5.  A persistent issue in the 
analysis was rigorously identifying the breakpoint between the two slopes.  The experimenter 
had a relatively small number of such cases, and was content to fit them by eye.  In order to run 
Monte Carlo simulations with (generally) 100 realizations and many “pore connectivity” values, 
it was desirable to use a method that was objective but not time-intensive.  Satisfactory 
procedures were identified and tested for this purpose.  The programs written during the 
development of these procedures have been provided to LLNL in addition to this report.  A brief 
summary of breakpoint statistics is given in Appendix 2. 
 
Results 
The main result of the modeling was that it successfully connected the experimental work to 
existing theory.  Several features in the experimental data, not explained by more classical 
theories, were both evident in the simulation output and consistent with predictions of 
percolation theory.  Below, there is first a description of how the simulations are related to the 
experiments, followed by a discussion of several of the data features and conceptual connections. 
 
A geological porous medium has pores, some or all of which are active, that is, connected to 
other pores.  Call the intersections pore bodies, and the connections pore throats.  The parallels 
between porous media, network models, and graph theory are simple: pore bodies correspond to 
the sites (intersections) in a graph or a pore network model, and pore throats are the bonds.  
Where an active bond exists between neighboring sites, it denotes a pore throat connecting two 
pore bodies.  If (for example) a simple cubic lattice had every site connected by active bonds to 
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its nearest neighbors, it would represent a medium in which all pores were accessible; this 
medium would have a mean pore coordination of 6. 
 
Two conditions must be met for a solute to diffuse from one pore to a neighboring pore: (1) there 
must be an open pore throat (an active bond) connecting the two pores, and (2) both the pores 
and the pore throats must be filled with water.  In other words, the presence (absence) of water 
plays the same role as the presence of an active (missing) pore throat.  Consequently, pore 
connectivity and matrix saturation can be equivalently adjusted by the single model parameter p, 
the connection probability.  This conceptual equivalence can be seen in e.g. Hunt (2005), where 
the probability p in site or bond percolation may be replaced by either the volume water content 
θ or the porosity φ in continuum percolation, as circumstances warrant. 
 
Overview: comparison of imbibition simulation with imbibition experiment 
An imbibition experiment produces 
data showing a curve with up to 4 
regions (Fig. 1).  These are referred to 
as the initial sorption region, the low-
slope region, the high-slope region, 
and the final plateau region.  The 
initial sorption region shows rapid 
initial uptake of water during the first 
few seconds of the experiment, with 
water having essentially no viscous 
resistance.  That is, the water is filling 
pores and sorbing to hydrophilic 
surfaces that are exposed on the face: 
no travel through the medium is 
required.  This initial phase is rapid 
(perhaps 20 s in Fig. 1), and involves 
very little water.  The simulations 
produce equivalent patterns (Fig. 2), 
though of course the specific masses 
and times differ. 

0.001

0.010

0.100

1.000

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06
Time, s

M
as

s 
im

bi
be

d,
 g

Figure 1.  Cumulative imbibition into tuff sample 
TSw34L8, showing initial sorption, low-slope, and h
slope regions.  Max gives low slope = 0.27, and high 
slope = 0.42.  This sample was not run until the 
wetting front reached the top: there is no plateau. 

igh-

 
The low-slope region, which is the first segment if both low- and high-slope regions are present, 
corresponds to imbibition before the wetting front has penetrated one correlation length χ from 
the inlet face (see Appendix 1).  At distances l < χ, water coming from the inlet face encounters 
finite clusters that are accessible only because the medium has a cut face.  This gives a high 
accessible porosity that decreases as the wetting front advances; the tortuosity encountered by 
the wetting front also increases with distance.  The medium has fractal character at this point, 
and the imbibition slope takes a theoretical slope of approximately 0.265 (Stauffer and Aharony, 
1994). 
 
For distances l > χ, only the infinite cluster is accessible, and with χ established as the effective 
length scale, the medium now behaves classically.  That is, the imbibition slope goes to 0.5, and 
the tortuosity holds to a constant value.  This is the high-slope region, also called the second 
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segment when both low- and high-slope regions are present1.  The finite clusters that aren’t 
accessible from the inlet face are now “holes” in the infinite cluster.  As Stauffer and Aharony 
(1994) picturesquely put it, at scales “larger than the typical hole size [χ], the [diffusing 
molecule] feels only an average over the small holes, just as the tyres of your Rolls-Royce 
average over the small pores of the asphalt over which your chauffeur is driving you.” 
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Figure 2.  Simulated imbibition with connectivity 
p = 0.25 (one realization).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As imbibing water reaches the top of a core, there are fewer and fewer empty pores to fill, so the 
imbibition levels off.  This appears as a plateau in the imbibition curve.  Again, the same 
behavior shows up in the simulations.  These simulations have not been run in a more 
“mainstream” simulation model, such as Hydrus, to see if it reproduces any of this behavior.  It 
may be expected that a mainstream model would reproduce the high-slope region and the end 
plateau, and it might reproduce the initial sorption region, but it certainly wouldn’t reproduce the 
low-slope region. 
 
In summary, the general pattern is that, at high connectivities, the imbibition slope of 0.5 was 
seen.  As p decreased toward the percolation threshold pc, the slope also decreased.  Quite close 
to pc, the observed slope was either the low slope (about 0.265) throughout, or it started low and 
then transitioned to the classical 0.5.  For p < pc, imbibition would proceed only a short distance 
before all pathways were blocked.  It is emphasized here that the low-slope region is not 
“programmed into” the model: there is nothing in the code that examines the pore connectivity 
and “decides” what slope to produce.  The behavior of the imbibition slope is an emergent 
property of random walks on a low-connectivity network. 
 
                                                 
1 The initial sorption region is not considered to be a “segment”: it is basically a noisy nuisance.  All data 
for times < 1000 time steps was generally discarded.  Additionally, the second generation simulations 
don’t have a final plateau, and the first generation simulations are often halted by then.  So there may be 
up to four regions, but in terms of finding a breakpoint, there are only one or two segments. 
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Matrix saturation 
Several simulations were run using the first generation (anti-DLA) program, to assess whether 
the program saw any difference (other than the actual imbibition rate) in imbibition starting from 
different antecedent (initial) water contents.  These anti-DLA simulations require huge amounts 
of CPU time, so only a few were run, and generally on fairly small (e.g., 643) networks.  Starting 
imbibition from different water contents did not affect the information gathered about the 
medium.  When starting with a moister medium, the program took less time but the data were not 
as clean.  Experiment and simulation regarding changes in imbibition rate as a function of initial 
saturation were not directly compared.   
 
Imbibition slopes and changes in slope 
The imbibition slopes that will theoretically be encountered are 0.265 and 0.50.  Neither 
experiment nor simulation was strictly confined to this choice; the range of values found is 
attributable to finite-size effects.  On average, however, the slopes adhered closely to the 
theoretical values (Fig. 3).  Broadly speaking, a wider range of slopes was seen in smaller 
networks, and a narrower range in experiments than in simulations.  This latter observation 
reflects the samples’ size – thousands or millions of pores across, in contrast to the several 
hundred “pores” across a network model. 
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 Figure 3.  Mass imbibed as a function of time, using the second generation 

program.  Connectivity decreases from p = 1.0 (left-most line) to p = pc (right-
most line).  Log gridlines show that slopes are generally either 0.5, or 
approximately 0.265. 

 
 
 
The greatest range and variability in slope was seen in high-slope regions that followed a low-
slope region.  Here again the explanation is finite-size effects: when a low-slope region is 
present, the relevant scale of the system is the correlation length χ rather than the mean pore size 
(see Appendix 1 for some percolation concepts).  The closer a system is to the percolation 
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threshold, the smaller the sample is in units of χ.  The variability of that portion of the system 
encountered beyond χ is therefore quite high, as shown in Figure 4. 
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 Figure 4.  Standard deviation of the mean first arrival time of 5000 

random walkers at 256 lattice units from the inlet face.  The trend 
(drawn by eye) changes around p – pc = 0.01 (p = 0.26), below 
which value a non-negligible low-slope region is first encountered. 

 
 
 
 
It would be convenient to be able to estimate the distance to the changepoint, χ, by assuming that 
it is that fraction of the total sample length given by the fraction of water imbibed at the change 
in slope.  Unfortunately, that would be incorrect: the accessible porosity φa is greatest at the inlet 
face, and decreases to a constant value for distances L > χ (see Appendix 1).  But fortunately, the 
accessible porosity φa at a given distance l from the inlet face is related to distance by the 

(theoretical) relationships ( ) ν
β

φφ
−

== ll laa 0  for l < χ, and ( ) ν
β

χφφ
−

== 0laa l   for l ≥ χ.  In 
these equations, β and ν are exponents from percolation theory; in 3D, β/ν ≈ 0.466.  This makes 
estimating χ from the imbibition data slightly more cumbersome, but it is doable. 
 
Sample size 
There is little point to running second generation simulations on small lattices, for two reasons.  
First, as mentioned above, the variability is at least partially due to finite size effects.  Second, if 
looking for behaviors of large (L > χ) systems, one needs to focus on systems for which L is 
large relative to χ, and yet χ is large enough to have some effect.  Some otherwise identical 
simulations were run on lattices of size 643 and 2563.  The decrease in slope with decreasing 
connectivity is similar across lattice size when connectivities aren’t too low (Fig. 5).  However,  
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differences do show up at very low connectivities, which (inconveniently!) constitute the region 
of interest for this project.  This illustrates the potential for finite-size effects, again highlighting 
the importance of using large lattices; related issues are discussed below under “shape”. 
 
Sample shape 
Because earlier work by Ewing and Gupta (1993) and Ewing and Horton (unpublished) had 
indicated that there might be a sample shape effect for media near the percolation threshold, it 
was viewed as useful to examine this possibility in more detail.  One simple way to quantify the 
sample shape is with the aspect ratio, the ratio of the height to the diameter; for the simulations it 
is the x-dimension divided by the y- or z-dimensions (which are identical).  However, because 
computer resources are limited, many simulations were run using an approximately constant total 
volume, and simply varying the shape.  The resulting data confound the size and shape effects, as 
seen in Figure 6 (identical to Figure 5, but with other aspect ratio simulations added in).  The 
lattice for the high aspect ratio simulation (height/width = 4) is 512 lattice units tall; the aspect 
ratio 0.25 simulation used a lattice 102 units tall.  In such cases, it is difficult to distinguish 
between the effects of size and shape. 
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Figure 5.  Difference between fitted first-segment 
slope and 0.265 (the theoretical low or first 
segment slope) as a function of connectivity p – pc 
for two different size lattices.  At high p values the 
slope is 0.5, so points are at 0.5-0.265 = 0.235. 

Figure 6.  Mean slope of single-segment imbibition 
curves as a function of connectivity p – pc, for 
several different aspect ratios and volumes.  Data 
from Figure 5 (ratio = 1) are included for comparison. 

 
 
When one examines only those simulations performed at p = pc, shape effects are easier to 
isolate.  Additionally, these graphs (Figure 7) use only data from simulations with x = 128.  
Samples with width = height more generally have a low initial slope, but only rarely have two 
distinct slopes.  Thin samples have lower apparent correlation length.  The correlation length is a 
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property of the material, not of the sample’s shape.  What is happening is that the apparent χ is 
constrained by the system size: in a narrow system, it cannot exceed the system width.  But in 
fact, at p = pc a tall thin system should not percolate at all.  The high aspect ratio simulations 
shown in Figure 7 form a biased sample, comprised of only those unlikely lattices that did 
percolate.  (For example, at p = pc and an aspect ratio of 4 (512 high, 128 wide in y and z), only 
12 in 1000 simulations would percolate.)  The trends in Fig. 7 cannot therefore be taken as 
representative.  Samples that did not percolate would have shown a low slope, followed by a 
plateau – no increase in mass or distance – long before the wetting front reached the top of the 
core. 
 
 

0.0001

0.001

0.01

0.1

1

0.1 1 10
Height / w idth

Sl
op

e 
- l

ow
 s

lo
pe Figure 7.  1st segment slope, percent of simulations 

having two segments, and correlation length χ 
(determined by change in slope) as a function of 
aspect ratio, for lattices at p = pc having height 
x=128.  The squat samples (low aspect ratio) stay 
at the low slope throughout; their correlation length 
χ is at least 128.  This is why none have two slopes. 

 
Suppose one takes a moderately well-connected sample: it percolates and has a high imbibition 
slope.  Repeatedly core the sample to half its previous radius, dry it, epoxy it along the sides, and 
conduct an imbibition test.  Eventually the sample will no longer percolate (Figure 8).  The last 
sample to percolate may show two distinct slopes, but it also may not: among the hundreds of 
simulations run, only a small percentage showed two distinct slopes.  But even without those two 
slopes, something about the correlation length can be learned.  Because the correlation length is 
determined by the connectivity of the material rather than by the shape of the sample, one can 
use the width of the sample to determine χ.  Specifically, the correlation length for a given 
material is bracketed by the width of the last sample to percolate, and the first sample to not 
percolate.  This illustrates why the correlation length is sometimes also called the “mean path 
separation”: that a cross-sectional area smaller than χ2 would be unlikely to contain a pathway on 
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the infinite cluster.  Notice that, for the physical experiments, this method requires that the 
sample properties not be disturbed by the coring (e.g., by cracking), and that each smaller core 
remain representative of the material as a whole (i.e., that the material be homogeneous at the 
scale of the sample). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No simulations were run for p < pc.  Such a connection probability is unlikely for a natural 
material, because the rock-forming processes are affected by the percolation threshold.  In a 
solidified foam such as tuff, the gas cannot escape until pores are sufficiently connected to 
percolate, but once some gas has escaped much pressure is relieve, and further connections may 
not be forced.  Likewise, a crystalline rock under stress may crack until the fracture network 
reaches pc; at that point much stress is relieved, and further cracking is less likely.  Because 
natural materials immediately below the percolation threshold are not commonly encountered, 
samples with width > height are not generally needed; accordingly, simulations with width > 
height were only rarely run. 
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The conclusion to be drawn from the work on this project is that, when working with low-
connectivity materials, properties are best measured on samples for which width ≈ height.  Other 
shapes may bias the results. 
 
Upscaling 
This study did not focus on upscaling issues, but a simple comment is in order.  When the 
correlation length is small – connectivity is high – percolation issues can largely be ignored.  

 
Figure 8.  Left Panel:  Distribution of the maximum accessible distance in a x=512 lattice at p = pc, 
for different widths (y,z).  At x=y=z, approximately 50% percolate.  The median (50th %ile) distance is
approximately equal to the lattice width, over two orders of magnitude.  Right Panel:  Percent 
percolating as a function of width for several connection probabilities.  Repeatedly coring a sample 
would move it to the left along its connectivity line in the figure, eventually causing it to stop 
percolating. 
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This is because, at scales L >> χ, the material behaves classically.  But when the correlation 
length is non-negligible, such that sample measurements are influenced by it, then extrapolating 
to larger sizes is non-trivial.  A corollary is that when measuring diffusion (for example), long 
experimental times should be used, and the early-time data may be suspect.   
 
Episodic flow 
One episodic flow experiment was run, using a total of four episodes.  Each episode consisted of 
a brief fracture-flow period, followed by a longer period during which the fracture was air-filled.  
Each episode introduced two new tracers: one sorbing and one non-sorbing.  The reason for 
using so many tracers was simply that two kinds of analysis were used: effluent concentration 
measured during the experiment, and resident concentration measured destructively at the end of 
the experiment.  Because simulations are not at risk from destructive sampling, only a single 
episode’s worth of tracers was needed; additional episodes could then follow, with the effluent 
concentration and the tracer locations in the matrix recorded as desired. 
 
A program for simulating tracer movement under episodic flow conditions was developed, but 
no simulations were run beyond a few small test suites.  The CPU requirements exceeded the 
available capacity to obtain reasonably complete results.  Nonetheless, the program development 
is discussed in the scientific notebook, and the source code and scientific notebook have been 
provided to LLNL separate from this report.  It is recommended that episodic flow be considered 
for future work in this subject area. 
 
Resulting Publications 
 
Hu Q, RP Ewing, CI Steefel, L Tomutsa, and GB Hudson (2005).  Multiple approaches to 

studying diffusion processes in geological media.  Geochim. et Cosmochim. Acta, 69 A171, 
Suppl. 1. 

 
Hu Q, RP Ewing, L Tomutsa, and MJ Singleton (2006).  Pore connectivity, episodic flow, and 

unsaturated diffusion in fractured tuff.  pp 70-76 In Proc. 11th Internat’l High-Level 
Radioactive Waste Management Conference (IHLRWM), April 30 - May 4, 2006, Las Vegas, 
NV. 
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Appendix 1:  Percolation Theory 
 
“Percolation [theory] describes properties related to the connectivity of large numbers of objects 
which individually have some spatial extent, and for which their spatial relationships are relevant 
and statistically prescribed” (Hunt, 2005).  More concretely, percolation theory describes the 
global properties arising in a system composed of many roughly equivalent constituent parts, 
where the main property that changes is the local degree of connection between those 
constituents.  For example, suppose there is a large (preferably infinite) container filled with a 
random mixture of glass marbles and steels balls: what fraction of the spheres must be steel in 
order for an electrical current to pass through an arbitrarily large distance in the container?  and, 
what is the system’s electrical conductivity as a function of the fraction of spheres that are steel? 
 
Percolation theory works best near the transition between conducting and not-conducting; this is 
called the percolation threshold, or criticality.  Below this point, there is no transport (or at least, 
no transport across a non-trivial distance); above that point, transport can occur.  It turns out that 
just above criticality, many different systems display identical behavior.  The various properties 
– mean size of a connected cluster, relative “mass” of the “infinite” cluster, conductivity, and so 
on – tend to follow power laws in the distance from criticality: for example, σ(p) ~ (p – pc)2, 
where σ is electrical conductivity, p is the proportion of the constituents that are active (e.g., the 
steel balls), and pc is the critical proportion.  In this equation, it is known that the conductivity 
exponent is 2.0 in 3D; in other dimensions it takes other values.  This convenient (and 
mysterious) aspect of percolation theory – that equations change only in the value of their 
exponent when the dimension is changed – is called “universality”. 
 
A fundamental variable in any system above but near the percolation threshold is the correlation 
length.  Denoted χ, this distance scales as χ ~ (p – pc)-ν (where ν = 0.88 in 3D) (Fig. A1).  A 

system at criticality (i.e., at p = pc) 
appears fractal, and fractals have no 
characteristic length.  But above the 
percolation threshold, χ is the 
characteristic length.  Processes 
operating at a scale smaller than χ 
“see” a fractal system, while processes 
at a greater scale “see” a uniform 
system.  One therefore observes 
fundamentally different behavior at 
these different scales, with the 
transition occurring as a process’s 
scale exceeds the system’s 
characteristic scale χ.  This is precisely
what is seen in the imbibition 
experiments: the slope of the 
imbibition curve changes at a dista

Fig. A1 (from Ewing & Horton, 2003b).  The correlation 
length χ is referred to here as the depth of the edge 
effect.  The dashed line has an exponent of -0.88, the 
theoretical value. 

 

nce 
 from the inlet face. χ
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Some other fundamental percolation concepts and relationships also show up in the experimental 
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Figure A2.  Pu242 concentration as a function of distance 
from the inlet face.  Ca is given for reference, to show the 
constant background of the rock. 
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(2) The “constant” value of the accessible porosity φa, for distances l > χ (e.g., for distances 
100..200 in Fig. A3), is itself a function of the proximity to the percolation threshold.  
Specifically, φa ~ (p – pc)-β, where β = 0.41 in 3D. 

 
(3) Near criticality, the effective diffusion coefficient D decreases with distance from the inlet 

face as D(l) ~ l-1.8 for l <χ, then remains constant for l > χ.  Some consideration of this 
phenomenon was recently reported by Zhou et al. (2006), who reported that simulations of a 
long-term fracture-matrix tracer test only matched the data when a thin higher-D fracture 
surface layer was assumed.  Similar findings were earlier reported by Narasimhan. 

 
(4) The imbibition transition is affected by anisotropy in the sample.  Sample anisotropy means 

that the sample exceeds the correlation length in at least one dimension, but not in all 
dimensions.  So (for example) a tall, thin sample of an isotropic medium may be anisotropic: 
it may be taller than one correlation length, but its radius may be less than χ (Hunt, 2006).  
This anisotropy may cause imbibition to change slope in a tall thin sample, although it 
showed no such transition over the same distance in a sample that was more evenly sized in 
all dimensions.  This was seen in experiments and simulations both. 

 
(5) The shortest diffusion pathway between two points is greater than the straight-line distance; 

the ratio of the two values is generally called the tortuosity τ (though there are different ways 
of defining it; some use the inverse of the value here described, and some the square).  This 
value is typically assumed to be scale-invariant for a given material.  But as a system 
approaches criticality, the tortuosity increases with distance as τ(L) ~ LDmin for L <χ, then 
remains constant for L > χ.  The exponent Dmin takes the value 1.34 in 3D. 

 
 
 
 
 

Final Report for Subcontract B541028  Page 15 of 17 



Appendix 2:  The Statistics of Breakpoints 
 
Experimental data occasionally present as a “broken” line: threshold responses are a common 
example.  If the conceptual model supports a two-line interpretation, the next issue is to identify 
the breakpoint xb.  If there is a need to statistically justify the presence of a breakpoint, an 
appropriate test must also be found.  Because both experimental and simulated imbibition 
experiments often produced broken-line data, it was necessary to find a rigorous way both to 
identify the breakpoint, and to evaluate its statistical significance. 
 
Several attempts were made to identify the x-value that gave the lowest total error sum of squares 
in a two-line fit (henceforth denoted MinSS).  When this was not successful, a Hidden Markov 
model (HMM) was considered, which posits an underlying but hidden process that switches the 
observable system between two or more discrete states.  Several HMM variants were 
implemented, and they worked quite well, far better than earlier attempts that fit two straight 
lines independently. 
 
Subsequent conversations with a colleague who is a mathematical statistician (Dr. David Meek, 
USDA-ARS-NSTL) revealed several weaknesses in the approach, the main one being that two 
straight lines were being fitted independently: 
   for x < xb xbay 111 +=
   for x > xb xbay 222 +=
Dr. Meek recommended fitting the two lines simultaneously, requiring three fit parameters rather 
than four.  The method used (Julious, 2001) requires that the two lines intersect at xb, so a1 can 
be obtained from the other three parameters: 
  ( )1221 bbxaa b −+=
Using this three-parameter fit, the MinSS method was almost always the best fitting method, 
usually even better than the HMMs.  This is the method used in the analysis documented in this 
report. 
 
Investigations also showed that, if the wrong breakpoint is identified, then the statistics used to 
decide between a one-line and a two-line interpretation of the data are more likely to support the 
two-line interpretation.  In other words, to make the best possible decision between the one-line 
and the two-line interpretation, one must first find the best possible breakpoint, which requires 
that one (temporarily) assumes the two-line interpretation; only then can its validity be properly 
tested.  This sequence is emphasized because some find it counter-intuitive. 
 
Various statistics can be used to support the final decision.  Several were reviewed, including the 
Akaike Information Criterion (AIC; Akaike, 1974) and a simple t-test of the difference between 
the two slopes.  In the end, Chow’s F statistic (Chow, 1960) seems most appropriate, because not 
only is it consistent (like most of the other statistics examined), but it also allows the user to set a 
significance level.  (In the AIC, for example, the “significance level” is essentially hardwired; 
the difference between the AIC and some others is simply the value of the built-in significance 
value.) 
 
The breakpoint data presented in this report, particularly in the “sample shape” section, were 
obtained as follows:   
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1. First, the simulations were run, producing an output file (named <something>.out). 
   
2. This file was then read by the breakpoint identification program (brkpt.pas), which identified 

breakpoints using the 3-parameter minSS method, and calculated Chow’s F statistic for the 
two-line interpretation; results were written to a breakpoint file (<something>.brk). 

  
3. This file was then read into Excel, and subjected to three screens: a two-line interpretation 

was accepted only if (a) it was significant according to Chow’s F at p<0.05, (b) the second 
slope was at least 0.4, and (c) the difference in slopes was at least 0.15.  These last two 
threshold values are somewhat arbitrary, based on examination of many combinations. 

 
 
When an expression like “two distinct slopes” is given in the report, it refers to cases which 
passed these three tests. 
 
Numbers of interest from this analysis are (a) the fraction of realizations meeting these criteria, 
(b) the segment slope(s), and (c) the breakpoint xb.  For an inlet face of the lattice at x = 0, the 
breakpoint xb corresponds to percolation theory’s correlation length χ in lattice units. 
 


